Answer on Question \#51444, Physics Solid State Physics

Consider a quantum particle confined in a well of width a. If the particle is in its ground state calculate the quantity $\Delta \mathrm{x} \Delta \mathrm{p}$ where $(\Delta x)^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}$ and $(\Delta p)^{2}=\left\langle p^{2}\right\rangle-\langle p\rangle^{2}$.

Solution:

Fig. 1

The wave function of a one-dimensional potential well

$$
\psi_{n}=\sqrt{\frac{2}{L}} \sin \left(\frac{\pi n x}{L}\right)
$$

where x is the threading coordinate; L is length of the box; n is the level number.

The momentum operator

$$
\hat{P}_{x}=-i \mathrm{~h} \frac{\partial}{\partial x}
$$

The average value of P_{X} if the particle is in its ground state

$$
\begin{aligned}
& \left\langle P_{X}\right\rangle=\int_{0}^{L} \psi_{1}^{*}(x) \hat{P}_{X} \psi_{1}(x) d x=\int_{0}^{L} \sqrt{\frac{2}{L}} \sin \left(\frac{\pi x}{L}\right)\left(-i \mathrm{~h} \frac{\partial}{\partial x}\right) \sqrt{\frac{2}{L}} \sin \left(\frac{\pi x}{L}\right) d x=-\frac{2 i \mathrm{~h}}{L} \int_{0}^{L} \sin \left(\frac{\pi x}{L}\right)\left(\frac{\partial}{\partial x}\right) \sin \left(\frac{\pi x}{L}\right) d x= \\
& -\frac{2 i \mathrm{~h}}{L} \frac{\pi}{L} \int_{0}^{L} \sin \left(\frac{\pi x}{L}\right) \cos \left(\frac{\pi x}{L}\right) d x=-\frac{i \mathrm{~h} \pi n}{L^{2}} \int_{0}^{L} \sin \left(\frac{2 \pi n x}{L}\right) d x=-\left.\frac{i \mathrm{~h} \pi n}{L^{2}} \cdot \frac{L}{2 \pi n} \cos \left(\frac{2 \pi n x}{L}\right)\right|_{0} ^{L}=0
\end{aligned}
$$

The average value of $P_{X}{ }^{2}$ if the particle is in its ground state

$$
\begin{aligned}
& \left\langle P_{X}^{2}\right\rangle=\int_{0}^{L} \psi_{1}^{*}(x) \hat{P}_{X}^{2} \psi_{1}(x) d x=\int_{0}^{L} \sqrt{\frac{2}{L}} \sin \left(\frac{\pi x}{L}\right)\left(-i \mathrm{~h} \frac{\partial}{\partial x}\right)^{2} \sqrt{\frac{2}{L}} \sin \left(\frac{\pi x}{L}\right) d x= \\
& -\frac{2 \mathrm{~h}^{2}}{L} \int_{0}^{L} \sin \left(\frac{\pi x}{L}\right)\left(\frac{\partial^{2}}{\partial x^{2}}\right) \sin \left(\frac{\pi x}{L}\right) d x=\frac{2 \mathrm{~h}^{2}}{L}\left(\frac{\pi}{L}\right)^{2} \int_{0}^{L} \sin \left(\frac{\pi x}{L}\right) \sin \left(\frac{\pi x}{L}\right) d x=\frac{\mathrm{h}^{2} \pi^{2}}{L^{2}}
\end{aligned}
$$

The coordinate operator

$$
\hat{x}=x
$$

The average value of \hat{x} if the particle is in its ground state

$$
\langle x\rangle=\int_{0}^{L} \psi_{1}^{*}(x) \hat{x} \psi_{1}(x) d x=\int_{0}^{L} \sqrt{\frac{2}{L}} \sin \left(\frac{\pi x}{L}\right) x \sqrt{\frac{2}{L}} \sin \left(\frac{\pi x}{L}\right) d x=L / 2
$$

The average value of x^{2} if the particle is in its ground state

$$
\left\langle x^{2}\right\rangle=\int_{0}^{L} \psi_{1}^{*}(x) x^{2} \psi_{1}(x) d x=\int_{0}^{L} \sqrt{\frac{2}{L}} \sin \left(\frac{\pi x}{L}\right) x^{2} \sqrt{\frac{2}{L}} \sin \left(\frac{\pi x}{L}\right) d x=\frac{L^{2}}{6}\left(2-3 / \pi^{2}\right)
$$

Then

$$
\Delta x \Delta p=\sqrt{\left(\frac{\mathrm{h}^{2} \pi^{2}}{L^{2}}-0\right)\left(\frac{L^{2}}{6}\left(2-3 / \pi^{2}\right)-\frac{L^{2}}{4}\right)}=\frac{\mathrm{h}}{2 \sqrt{3}} \sqrt{\pi^{2}-6}
$$

Answer: $\Delta x \Delta p=\frac{\mathrm{h}}{2 \sqrt{3}} \sqrt{\pi^{2}-6}$
https://www.AssignmentExpert.com

