

Answer on question # 51440, Physics, Solid State Physics

Question The position and momentum of 1 keV electron are simultaneously measured. If the uncertainty in its position is 1A, calculate the uncertainty in its momentum. Mass of electron = $9.1 \cdot 10^{-31}$ kg ?

Solution Uncertainty principle tells us

$$\delta x \cdot \delta p_x \geq \frac{\hbar}{2}$$

where $\hbar \approx 1.05 \cdot 10^{-34} J \cdot s$ Hence, knowing δx we can find δp_x :

$$\delta p_x = \frac{\hbar}{2\delta x} = \frac{1.05 \cdot 10^{-34}}{2 \cdot 10^{-10}} \approx 5 \cdot 10^{-23} m \cdot s$$