Answer on Question \#51423, Physics, Astronomy Astrophysics

A spaceship moving with an initial velocity of 58.0 meters/second experiences a uniform acceleration and attains a final velocity of 153 meters/second. What distance has the spaceship covered after 12.0 seconds?

Solution:

Change of speed is described by the Eq.(1)

$$
\begin{equation*}
v=v_{0}+a t \tag{1}
\end{equation*}
$$

where $v_{0}=58 \mathrm{~m} / \mathrm{s}$ is the initial velocity; a is the acceleration.
From Eq.(1)

$$
\begin{equation*}
a=\frac{v-v_{0}}{t} \tag{2}
\end{equation*}
$$

The change of coordinates is described by the equation

$$
\begin{equation*}
x=v_{0} t+\frac{a t^{2}}{2} \tag{3}
\end{equation*}
$$

From Eq.(2) and Eq.(3)

$$
\begin{equation*}
x=v_{0} t+\frac{\left(v-v_{0}\right) t^{2}}{2 t}=t\left(v_{0}+\frac{v-v_{0}}{2}\right)=\frac{v+v_{0}}{2} t=\frac{58+153}{2} \cdot 12=1266 \mathrm{~m} \tag{4}
\end{equation*}
$$

Answer: 1266m

