Answer on Question \#51386-Physics-Mechanics-Kinematics-Dynamics

The moment of inertia of a annular disc of mass M, the inner diameter R_{1} and outer diameter is R_{2} about a perpendicular axis through its center is

Solution

An annular disc is just a circular disc from which a smaller, concentric disc has been removed, leaving a hole in its place as shown in the figure.

Let O be the center of annular disc. Then, clearly, face area of the disc is $\pi\left(R_{2}^{2}-R_{1}^{2}\right)$ and, therefore, mass per unit area of the disk $=\frac{M}{\pi\left(R_{2}^{2}-R_{1}^{2}\right)}$.

Now, consider a coaxial ring of radius x and width $d x$ shown in the figure. We clearly have,
face area of the ring $=2 \pi x d x$ and, therefore, it mass $=\frac{M}{\pi\left(R_{2}^{2}-R_{1}^{2}\right)} 2 \pi x d x=\frac{M 2 x}{\left(R_{2}^{2}-R_{1}^{2}\right)} d x$.
Hence, the moment of inertia of this ring about an axis through O and perpendicular to its plane is

$$
\frac{M 2 x}{\left(R_{2}^{2}-R_{1}^{2}\right)} d x \cdot x^{2}=\frac{M 2 x^{3}}{\left(R_{2}^{2}-R_{1}^{2}\right)} d x
$$

The moment of inertia of the whole annular disk about an axis through O and perpendicular to its plane is thus easily obtained by integrating the above expression for the moment of inertia of this ring, between the limits $x=R_{1}$ and $x=R_{2}$, so that, we have

$$
\begin{gathered}
I=\int_{R_{1}}^{R_{2}} \frac{M 2 x^{3}}{\left(R_{2}^{2}-R_{1}^{2}\right)} d x=\frac{2 M}{\left(R_{2}^{2}-R_{1}^{2}\right)} \int_{R_{1}}^{R_{2}} x^{3} d x=\frac{2 M}{\left(R_{2}^{2}-R_{1}^{2}\right)}\left[\frac{x^{4}}{4}\right]_{R_{1}}^{R_{2}}=\frac{2 M}{\left(R_{2}^{2}-R_{1}^{2}\right)}\left[\frac{\left(R_{2}^{4}-R_{1}^{4}\right)}{4}\right] \\
=\frac{M\left(R_{2}^{2}+R_{1}^{2}\right)}{2} .
\end{gathered}
$$

Answer: $\frac{M\left(R_{2}^{2}+R_{1}^{2}\right)}{2}$.

