Answer on Question \#51385-Physics-Mechanics-Kinematics-Dynamics

A certain sprinter has a top speed of $10.6 \mathrm{~m} / \mathrm{s}$. If the sprinter starts from rest and accelerates at a constant rate, he is able to reach his top speed in a distance of 10.1 m . He is then able to maintain his top speed for the remainder of a 100 m race.
(a) What is his time for the 100 m race?
(b) In order to improve his time, the sprinter tries to decrease the distance required for him to reach his top speed. What must this distance be if he is to achieve a time of 10.3 s for the race?

Solution

(a) An average velocity of sprinter on acceleration part is

$$
\bar{v}=\frac{1}{2}\left(v_{\text {initial }}+v_{\text {final }}\right)=\frac{1}{2}\left(0 \frac{\mathrm{~m}}{\mathrm{~s}}+10.6 \frac{\mathrm{~m}}{\mathrm{~s}}\right)=5.3 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Therefore it took a time of

$$
t_{1}=\frac{s_{1}}{\bar{v}}=\frac{10.1 \mathrm{~m}}{5.3 \frac{\mathrm{~m}}{\mathrm{~s}}}=1.9 \mathrm{~s}
$$

to complete this distance .
He ran the remaining $100 \mathrm{~m}-10.1 \mathrm{~m}=89.9 \mathrm{~m}$ at a speed of $10.6 \frac{\mathrm{~m}}{\mathrm{~s}}$, or in a time of

$$
t_{2}=\frac{s_{2}}{v}=\frac{89.9 \mathrm{~m}}{10.6 \frac{\mathrm{~m}}{\mathrm{~s}}}=8.5 \mathrm{~s}
$$

His total time for the race is

$$
t=t_{1}+t_{2}=1.9 s+8.5 s=10.4 s
$$

(b) Let's call t_{1} the time spent in the acceleration phase, then $\left(10.3-t_{1}\right)$ is the time spent in the remainder of the race.

Since his maximal speed is still $10.6 \frac{\mathrm{~m}}{\mathrm{~s}}$, his average speed in the acceleration part will still be $5.3 \frac{\mathrm{~m}}{\mathrm{~s}}$; in the time t_{1}, he will cover a distance of $5.3 t_{1}$ meters; in the rest of the race he will cover a distance of $10.6\left(10.3-t_{1}\right)$ meters. The sum of these distances is 100 m , so we have

$$
5.3 t_{1}+10.6\left(10.3-t_{1}\right)=100
$$

We can solve this easily for t_{1} :

$$
t_{1}=1.73 \mathrm{~s}
$$

This means he must complete the acceleration phase in 1.73 s ; running at an average velocity of $5.3 \frac{\mathrm{~m}}{\mathrm{~s}}$ for 1.73 s means he covers a distance of

$$
5.3 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 1.73 \mathrm{~s}=9.17 \mathrm{~m}
$$

before reaching his constant speed of $10.6 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Answer: (a) 10.4 s ; (b) 9.17 m .

