Answer on Question \#51384, Physics, Mechanics | Kinematics | Dynamics

Question

An automobile driver increasing the speed at a constant rate from $45 \mathrm{~km} / \mathrm{h}$ to 58 km / h in 0.49 min . A bicycle rider speeds up at a constant rate from rest to 13 km / h in 0.49 min . What are the magnitudes of (a) the driver's acceleration and (b) the rider's acceleration?

Solution

(a) First of all, will rewrite the value:
$V_{0}=45 \mathrm{~km} / \mathrm{h}=\frac{45000 \mathrm{~m}}{3600 \mathrm{~s}}=12.5 \mathrm{~m} / \mathrm{s}$
$V_{1}=58 \mathrm{~km} / \mathrm{h}=\frac{58000 \mathrm{~m}}{3600 \mathrm{~s}}=16.11 \mathrm{~m} / \mathrm{s}$
$t=0.49 \mathrm{~min}=29.4 \mathrm{~s}$

Since the driver increasing the speed at a constant rate:
$V_{1}=V_{0}+a t \Rightarrow$
$a=\frac{V_{1}-V_{0}}{t}=\frac{16.11 \mathrm{~m} / \mathrm{s}-12.5 \mathrm{~m} / \mathrm{s}}{29.4 \mathrm{~s}}=0.1228 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
(b) Since the bicycle rider speeds up at a constant rate from rest:
$V_{1}=0+a t=a t$
$V_{1}=13 \mathrm{~km} / \mathrm{h}=3.61 \mathrm{~m} / \mathrm{s}$
$\Rightarrow a=\frac{V_{1}}{t}=\frac{3.61 \mathrm{~m} / \mathrm{s}}{29.4 \mathrm{~s}}=0.1228 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

Answer

(a) $0.1228 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
(b) $0.1228 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

