## Answer on Question \#51383, Physics - Mechanics - Kinematics Dynamics

Question A proton moves along the x axis according to the equation $x=$ $62 t+14 t^{2}$, where x is in meters and t is in seconds. Calculate (a) the average velocity of the proton during the first 3.0 s of its motion, (b) the instantaneous velocity of the proton at $t=3.0 \mathrm{~s}$, and (c) the instantaneous acceleration of the proton at $\mathrm{t}=3.0 \mathrm{~s}$.

Solution (a) Average velocity is total displacement divided by total time.

$$
\bar{v}=\frac{s}{t}=\frac{x=62 \cdot 3+14 \cdot 3^{2}}{3}=104 \mathrm{~m} / \mathrm{s}
$$

(b)instantaneous velocity is

$$
v(t)=x^{\prime}(t)=62+28 \cdot t
$$

At $\mathrm{t}=3.0$ :

$$
v(3)=62+28 \cdot 3=146 \mathrm{~m} / \mathrm{s}
$$

(c)instantaneous acceleration is

$$
a(t)=v^{\prime}(t)=28
$$

At $\mathrm{t}=3.0$ :

$$
a(3)=28 \mathrm{~m} / \mathrm{s}^{2}
$$

