A lead ball is dropped in a lake from a diving board 7.32 m above the water. It hits the water with a certain velocity and then sinks to the bottom with the same constant velocity. It reaches the bottom 4.88 s after it is dropped. (a) How deep is the lake?

Solution.

We right equation of motion of a lead ball:

$$
\begin{aligned}
& m d^{2} / d t^{2} x=-m g, h_{0}>x>h_{w}, \\
& m d^{2} / d t^{2} x=0, h_{w}>x>0,
\end{aligned}
$$

where h_{0} is the initial height of a ball, and h_{w} is the water level above the bottom. Solving these equations we have

$$
\begin{aligned}
& x=-g t^{2} / 2+v_{0} t+h_{0}, h_{0}>x>h_{w}, \\
& x=v_{1} t+h_{w}, h_{w}>x>0,
\end{aligned}
$$

where $v_{0}=0 \mathrm{~m} / \mathrm{s}$ and v_{1} can be find from the energy conservation law

$$
m v_{1}^{2} / 2=m g\left(h_{0}-h_{w}\right)
$$

$$
v_{1}=\sqrt{2 g\left(h_{0}-h_{w}\right)}
$$

Thus

$$
\begin{aligned}
& x=-g t^{2} / 2+h_{0}, h_{0}>x>h_{w}, \\
& x=\sqrt{2 g\left(h_{0}-h_{w}\right)} t+h_{w}, h_{w}>x>0,
\end{aligned}
$$

Total time when ball falls

$$
\begin{aligned}
& t_{\text {tot }}=t_{1}+t_{2} \\
& h_{0}-h_{w}=g t_{1}^{2} / 2 \\
& h_{w}=\sqrt{2 g\left(h_{0}-h_{w}\right)} t_{2},
\end{aligned}
$$

$$
\sqrt{2\left(h_{0}-h_{w}\right) / g}=t_{1}
$$

$$
h_{w} / \sqrt{2 g\left(h_{0}-h_{w}\right)}=t_{2}
$$

$$
\sqrt{2\left(h_{0}-h_{w}\right) / g}+h_{w} / \sqrt{2 g\left(h_{0}-h_{w}\right)}=t_{t o t}
$$

$$
h_{w}=\sqrt{2 g\left(h_{0}-h_{w}\right)}\left(t_{\text {tot }}-\sqrt{2\left(h_{0}-h_{w}\right) / g}\right)
$$

$$
h_{w}=\sqrt{2 * 9.8 \mathrm{~m} / \mathrm{s}^{2}(7.32 \mathrm{~m})}\left(4.88 \mathrm{~s}-\sqrt{2(7.32 \mathrm{~m}) / 9.8 \mathrm{~m} / \mathrm{s}^{2}}\right)
$$

Answer.

$$
h=43.8 \mathrm{~m}
$$

(b) What is the magnitude of the average velocity of the ball for the entire fall?

Solution.

We calculate two time periods:

$$
\begin{aligned}
& \sqrt{2\left(h_{0}-h_{w}\right) / g}=t_{1}=1.22 \mathrm{~s} \\
& t_{2}=4.88 \mathrm{~s}-1.22 \mathrm{~s}=3.66 \mathrm{~s}
\end{aligned}
$$

For the first period average velocity is a half of maximum velocity:

$$
\left\langle v_{1}\right\rangle=v_{1} / 2=\sqrt{2 g\left(h_{0}-h_{w}\right)} / 2=11.98 / 2 \mathrm{~m} / \mathrm{s}=5.99 \mathrm{~m} / \mathrm{s}
$$

$$
\left\langle v_{2}\right\rangle=11.98 \mathrm{~m} / \mathrm{s}
$$

$$
\langle v\rangle=\left\langle v_{1}\right\rangle t_{1} / t_{\text {tot }}+\left\langle v_{2}\right\rangle t_{2} / t_{\text {tot }}=5.99 \mathrm{~m} / \mathrm{s} * 1.22 \mathrm{~s} / 4.88 \mathrm{~s}+11.98 \mathrm{~m} / \mathrm{s} * 3.66 \mathrm{~s} / 4.88 \mathrm{~s}=10.48 \mathrm{~m} / \mathrm{s}
$$

Answer.

$$
\langle v\rangle=10.48 \mathrm{~m} / \mathrm{s}
$$

(c) Suppose the water is drained from the lake. The ball is now thrown from the diving board so that it again reaches the bottom in 4.88 s . What is the magnitude of the initial velocity of the ball?

Solution.

We right equation of motion of a lead ball:

$$
m d^{2} / d t^{2} x=-m g, h_{0}>x>0,
$$

at the endpoint of the trajectory we have
$0=-g t^{2} / 2+v_{0} t+h_{0}$
$v_{0}=\left(9.8 \mathrm{~m} / \mathrm{s}^{2}(4.88 \mathrm{~s})^{2} / 2-43.8 \mathrm{~m}-7.32 \mathrm{~m}\right) / 4.88 \mathrm{~s}$

Answer.

$v_{0}=13.44 \mathrm{~m} / \mathrm{s}$
http://www.AssignmentExpert.com/

