Answer on Question \#51380, Physics, Mechanics, Kinematics, Dynamics

Question:

Two subway stops are separated by 1500 m . If a subway train accelerates at $1.2 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ from rest through the first half of the distance and decelerates at $-1.2 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ through the second half, what are (a) its travel time and (b) its maximum speed?

Answer:

a) Time of acceleration equals:

$$
\begin{aligned}
& \frac{d}{2}=\frac{a t_{a}^{2}}{2} \\
& t_{a}=\sqrt{\frac{d}{a}}
\end{aligned}
$$

For deceleration $t_{d}=t_{a}$. Therefore, total time equals:

$$
t=2 t_{a}=2 \sqrt{\frac{d}{a}}=2 \sqrt{\frac{1500 \mathrm{~m}}{1.2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}}=70.7 \mathrm{~s}
$$

b) Maximum speed equals:

$$
v=a t_{a}=a \sqrt{\frac{d}{a}}=\sqrt{d a}=\sqrt{1500 \mathrm{~m} 1.2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=42.4 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

