

Answer on Question #51379, Physics, Mechanics | Kinematics | Dynamics

The law of motion of the car is $x(t) = v_0 t + \frac{at^2}{2}$, $v = v_0 + at$, where v_0 is velocity at first point. Let $T = 5.32 s$, $s = 56.2 m$, $v_2 = 14.8 \frac{m}{s}$. Hence, $s = v_0 T + \frac{aT^2}{2}$ and $v_2 = v_0 + aT$.

a) One has a linear system of equations for v_0, a . Substituting $a = \frac{v_2 - v_0}{T}$ from the second equation into the first equation, obtain $s = v_0 T + \frac{v_2 - v_0}{2T} \cdot T^2 = v_0 T + \frac{v_2 - v_0}{2} T = \frac{1}{2} (v_2 + v_0) T$, from where $\frac{2s}{T} = v_2 + v_0$, thus $v_0 = \frac{2s}{T} - v_2 = 6.38 \frac{m}{s}$ - that is the speed of the car at first point.

b) Using $a = \frac{v_2 - v_0}{T}$, obtain $a = \frac{14.8 \frac{m}{s} - 6.38 \frac{m}{s}}{5.32 s} \approx 1.58 \frac{m}{s^2}$.

c) $v(t') = v_0 + at'$, hence if $v(t') = 0 = v_0 + at'$, from where $t' = \frac{-v_0}{a}$ (the time seems to be negative because we chose $t = 0$ at first point). Hence, the car had zero speed when it had coordinate $x(t') = \frac{-v_0^2}{a} + \frac{v_0^2}{2a} = \frac{-v_0^2}{2a} = -12.88 m$. The distance from the first point is thus $12.88 m$.