Answer on Question \#51378, Physics, Mechanics | Kinematics | Dynamics

A rocket-driven sled running on a straight, level track is used to investigate the effects of large accelerations on humans. One such sled can attain a speed of 1640 km / h in 2.00 s , starting from rest. Find (a) the acceleration (assumed constant) in terms of g and (b) the distance traveled.

Solution:

The time dependence of velocity is given by Eq.(1).

$$
\begin{equation*}
v(t)=v_{0}+a t \tag{1}
\end{equation*}
$$

where a is acceleration and $v_{0}=0$ is initial velocity.
From Eq.(1)

$$
\begin{equation*}
a=\frac{v}{t}=\frac{1640 \mathrm{~km} / \mathrm{h}}{2.00 \mathrm{~s}}=\frac{455.6 \mathrm{~m} / \mathrm{s}}{2.00 \mathrm{~s}}=227.8 \mathrm{~m} / \mathrm{s}^{2} \tag{2}
\end{equation*}
$$

where $1640 \mathrm{~km} / \mathrm{h}=1640 \cdot 1000 / 3600=455.6 \mathrm{~m} / \mathrm{s}$
The acceleration of free fall is $g=9.8 m / s^{2}$. Than

$$
\begin{equation*}
a=227.8 m / s^{2}=23.2 g \tag{3}
\end{equation*}
$$

The distance of traveling is given by Eq.(4)

$$
\begin{equation*}
s=v_{0} t+\frac{a t^{2}}{2}=0 \cdot 2 s+\frac{227.8 \mathrm{~m} / \mathrm{s}^{2} \cdot(2 s)^{2}}{2}=455.6 \mathrm{~m} \tag{4}
\end{equation*}
$$

Answer: The acceleration in terms of g is $a=227.8 \mathrm{~m} / \mathrm{s}^{2}=23.2 \mathrm{~g}$ the distance of traveling is 455.6 m .

