Answer on Question \#51377, Physics, Mechanics | Kinematics | Dynamics

Question

A train started from rest and moved with constant acceleration. At one time it was traveling $20 \mathrm{~m} / \mathrm{s}$, and 170 m farther on it was traveling $46 \mathrm{~m} / \mathrm{s}$. Calculate (a) the acceleration, (b) the time required to travel the 170 m mentioned, (c) the time required to attain the speed of $20 \mathrm{~m} / \mathrm{s}$, and (d) the distance moved from rest to the time the train had a speed of $20 \mathrm{~m} / \mathrm{s}$.

Solution

(a) Since the train started from rest and moved with constant acceleration:
$V_{2}=V_{1}+a t$
$V_{1}=20 \mathrm{~m} / \mathrm{s}, V_{2}=46 \mathrm{~m} / \mathrm{s}$
By the same time:
$S=V_{1} t+\frac{a t^{2}}{2}, S=170 m$
So, we have a system with 2 variables a and t :
$\left\{\begin{array}{l}S=V_{1} t+\frac{a t^{2}}{2} \\ V_{2}=V_{1}+a t\end{array}\right.$
$t=\frac{V_{2}-V_{1}}{a} \Rightarrow S=V_{1} \frac{V_{2}-V_{1}}{a}+\frac{a}{2}\left(\frac{V_{2}-V_{1}}{a}\right)^{2}$
$S=\frac{V_{1}\left(V_{2}-V_{1}\right)}{a}+\frac{\left(V_{2}-V_{1}\right)^{2}}{2 a}=\frac{2 V_{1}\left(V_{2}-V_{1}\right)+\left(V_{2}-V_{1}\right)^{2}}{2 a} \Rightarrow$
$a=\frac{2 V_{1}\left(V_{2}-V_{1}\right)+\left(V_{2}-V_{1}\right)^{2}}{2 S}=\frac{40(46-20)+26^{2}}{340} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2} m}=$
$=5.047 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
(b) $t=\frac{V_{2}-V_{1}}{a}=\frac{46 m / s-20 \mathrm{~m} / \mathrm{s}}{5.047 m / s^{2}}=5.152 \mathrm{~s}$
(c) Since the train speeds up at a constant rate from rest:
$V_{0}=0$
$V_{1}=V_{0}+a t_{0}=a t_{0}$
$t_{0}=\frac{V_{1}}{a}=\frac{20 \mathrm{~m} / \mathrm{s}}{5.047 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=3,963 \mathrm{~s}$
(d) $S_{0}=\frac{a t_{0}^{2}}{2}=0.5 \cdot 5.047 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot(3,963)^{2} s^{2}=39,627 \mathrm{~m}$

Answer

(a) $5.047 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
(b) 5.152 s
(c) $3,963 \mathrm{~s}$
(d) $39,627 \mathrm{~m}$

