To stop a car, first you require a certain reaction time to begin braking; then the car slows under the constant braking deceleration. Suppose that the total distance moved by your car during these two phases is 51.9 m when its initial speed is $78.3 \mathrm{~km} / \mathrm{h}$, and 23.6 m when its initial speed is $49.1 \mathrm{~km} / \mathrm{h}$. What is (a) your reaction time?

Solution.

For both cases (initial velocities ${ }^{v_{1}}$ and ${ }^{v_{2}}$) we right down Newton's equations:

$$
d^{2} / t^{2} x=0,0<t<t_{0},
$$

$d^{2} / t^{2} x=-a_{s}, t_{0}<t$,
where t_{0} is the reaction time and a_{s} is the deceleration value. We solve these equations for different velocity values:

$$
\begin{aligned}
& x=v_{1} t, 0<t<t_{0,} \\
& x=-a t^{2} / 2+v_{1} t, t_{0}<t \\
& \text { for } v=v_{2} \\
& x=v_{2} t, 0<t<t_{0,} \\
& x=-a t^{2} / 2+v_{2} t, t_{0}<t .
\end{aligned}
$$

Since reaction time t_{0} in both cases is the same, we introduce the length of the path before driver's reaction
$l_{1,2}=v_{1,2} t_{0}$.
Deceleration continues until car stops. We find duration of deceleration requiring
$d x / d t=v\left(t_{d 1,2}\right)=0$

$$
\begin{aligned}
& v\left(t_{d 1,2}\right)=-a\left(t_{d 1,2}\right)+v_{1,2}=0 \\
& t_{d 1,2}=v_{1,2} / a
\end{aligned}
$$

Putting it into the main equation, we obtain

$$
\begin{aligned}
& d_{1,2}=v_{1,2} t_{0}+v \frac{v_{1,2}}{a}-\frac{a}{2}\left(\frac{v_{1,2}}{a}\right)^{2} \\
& d_{1,2}=v_{1,2} t_{0}+\frac{v_{1,2}^{2}}{2 a} \\
& \frac{1}{2} \frac{v_{1,2}^{2}}{d_{1,2}-v_{1,2} t_{0}}=a \\
& \frac{v_{1}^{2}}{d_{1}-v_{1} t_{0}}=\frac{v_{2}^{2}}{d_{2}-v_{2} t_{0}} \\
& \frac{d_{1}-v_{1} t_{0}}{v_{1}^{2}}=\frac{d_{2}-v_{2} t_{0}}{v_{2}^{2}} \\
& t_{0}=\frac{v_{1}^{2} d_{2}-v_{2}^{2} d_{1}}{v_{1} v_{2}^{2}-v_{2} v_{1}^{2}}=\frac{(78.3 \mathrm{~km} / \mathrm{h})^{2} 23.6 \mathrm{~m}-(49.1 \mathrm{~km} / \mathrm{h})^{2} 59.9 \mathrm{~m}}{(78.3 \mathrm{~km} / \mathrm{h})(49.1 \mathrm{~km} / \mathrm{h})^{2}-(49.1 \mathrm{~km} / \mathrm{h})(78.3 \mathrm{~km} / \mathrm{h})^{2}} \\
& t_{0}=\frac{(21.75 \mathrm{~m} / \mathrm{s})^{2} 23.6 \mathrm{~m}-(13.64 \mathrm{~m} / \mathrm{s})^{2} 59.9 \mathrm{~m}}{(21.75 \mathrm{~m} / \mathrm{s})(13.64 \mathrm{~m} / \mathrm{s})^{2}-(13.64 \mathrm{~m} / \mathrm{s})(21.75 \mathrm{~m} / \mathrm{s})^{2}}=-0.008 \mathrm{~s}
\end{aligned}
$$

Answer.

$t_{0}=-0.008 \mathrm{~s}$
What is (b) the magnitude of the deceleration?

Solution.

$$
a=\frac{1}{2} \frac{v_{1,2}^{2}}{d_{1,2}-v_{1,2} t_{0}}=0.5 \frac{(21.75 \mathrm{~m} / \mathrm{s})^{2}}{23.6 \mathrm{~m}-21.75 \mathrm{~m} / \mathrm{s} * 0.008 \mathrm{~s}}=10.1 \mathrm{~m} / \mathrm{s}^{2}
$$

Answer.

$$
a=10.1 \mathrm{~m} / \mathrm{s}^{2}
$$

