

Answer on Question #51375, Physics, Mechanics Kinematics Dynamics

In an arcade video game, a spot is programmed to move across the screen according to $x = 8.79t - 0.658t^3$, where x is the distance in centimeters measured from the left edge of the screen and t is time in seconds. When the spot reaches a screen edge, either at $x = 0$ or $x = 15.0\text{cm}$, t is reset to 0 and the spot starts moving again according to $x(t)$.

- (a) At what time after starting is the spot instantaneously at rest?
- (b) At what value of x does this occur?
- (c) What is the spot's acceleration when this occurs?
- (d) At what time $t > 0$ does the spot first reach an edge of the screen?

Solution:

(A) The spot is instantaneously at rest if $x = 0$ or $x = 15.0\text{cm}$. Then if $x = 0$ $8.79t - 0.658t^3 = 0 \Rightarrow t(8.79 - 0.658t^2) = 0$

$$t_1 = 0\text{s}$$

$$t_{2,3} = \pm \sqrt{\frac{8.79}{0.658}} = \pm 3.65\text{s}$$

We consider only physically correct solutions ($t > 0$).

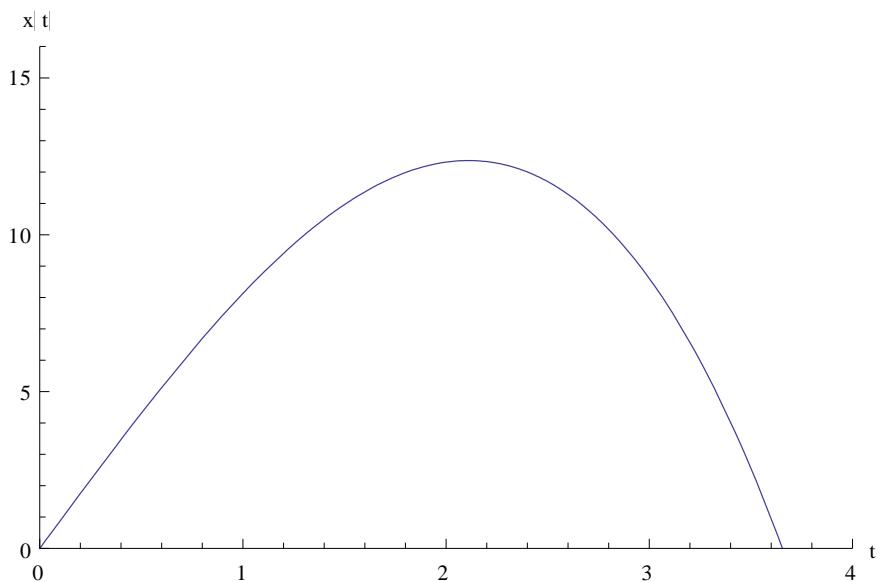


Fig.1

If $x = 15.0\text{cm}$ than $8.79t - 0.658t^3 = 15$

We built the dependence of $x(t)$ using mathematical software (see Fig.1). From Fig.1 it is clear that x never get 15cm.

(B) From Fig. 1 it clear that $x \in [0, x_{\max}]$. So $\frac{dx}{dt} = 8.79 - 3 \cdot 0.658t^2 = 0 \Rightarrow t = 2.11$, than

$$\frac{d^2x}{dt^2} = -6 \cdot 0.658t \Rightarrow \frac{d^2x}{dt^2}(2.11) = -6 \cdot 0.658 \cdot 2.11 = -8.33 < 0 \Rightarrow t_{\max} = 2.11.$$

$$x_{\max}(2.11) = 8.79 \cdot 2.11 - 0.658 \cdot 2.11^3 = 12.37 \text{ cm}$$

$$x \in [0, 12.37]$$

(C) The spot's acceleration is $a(t) = \frac{d^2x}{dt^2} = -6 \cdot 0.658t$

$$a(0) = 0$$

$$a(3.65) = -6 \cdot 0.658 \cdot 3.65 = -14.41 \text{ m/s}$$

(D) The spot is never reach an edge of the screen (see Fig.1)