Answer on Question \#51375, Physics, Mechanics Kinematics Dynamics

In an arcade video game, a spot is programmed to move across the screen according to $x=8.79 \mathrm{t}-0.658 \mathrm{t}^{3}$, where x is the distance in centimeters measured from the left edge of the screen and t is time in seconds. When the spot reaches a screen edge, either at $x=0$ or $x=15.0 \mathrm{~cm}$, t is reset to 0 and the spot starts moving again according to $\mathrm{x}(\mathrm{t})$.
(a) At what time after starting is the spot instantaneously at rest?
(b) At what value of x does this occur?
(c) What is the spot's acceleration when this occurs?
(d) At what time $\mathrm{t}>0$ does the spot first reach an edge of the screen?

Solution:

(A) The spot is instantaneously at rest if $x=0$ or $x=15.0 \mathrm{~cm}$. Than if $x=0$ $8.79 \mathrm{t}-0.658 \mathrm{t}^{3}=0 \Rightarrow t\left(8.79-0.658 \mathrm{t}^{2}\right)=0$
$t_{1}=0 s$
$t_{2,3}= \pm \sqrt{\frac{8.79}{0.658}}= \pm 3.65 \mathrm{~s}$
We consider only physically correct solutions ($t>0$).

Fig. 1

If $x=15.0 \mathrm{~cm}$ than $8.79 \mathrm{t}-0.658 \mathrm{t}^{3}=15$

We built the dependence of $x(t)$ using mathematical software (see Fig.1). From Fig. 1 it is clear that x never get 15 cm .
(B) From Fig. 1 it clear that $x \in\left[0, x_{\max }\right]$. So $\frac{d x}{d t}=8.79-3 \cdot 0.658 \mathrm{t}^{2}=0 \Rightarrow t=2.11$, than $\frac{d^{2} x}{d t^{2}}=-6 \cdot 0.658 \mathrm{t} \Rightarrow \frac{d^{2} x}{d t^{2}}(2.11)=-6 \cdot 0.658 \cdot 2.11=-8.33<0 \Rightarrow t_{\max }=2.11$.
$x_{\text {max }}(2.11)=8.79 \cdot 2.11-0.658 \cdot 2.11^{3}=12.37 \mathrm{~cm}$
$x \in[0,12.37]$
(C) The spot's acceleration is $a(t)=\frac{d^{2} x}{d t^{2}}=-6 \cdot 0.658 \mathrm{t}$
$a(0)=0$
$a(3.65)=-6 \cdot 0.658 \cdot 3.65=-14.41 \mathrm{~m} / \mathrm{s}$
(D) The spot is never reach an edge of the screen (see Fig.1)

