Answer on Question \#51374, Physics, Mechanics | Kinematics | Dynamics

Question

Two particles move along an x axis. The position of particle 1 is given by $x=9.00 t^{\wedge} 2+6.00 t+5.00$ (in meters and seconds);
the acceleration of particle 2 is given by $a=-8.00$ t (in meters per seconds squared and seconds) and, at $t=0$, its velocity is $20.0 \mathrm{~m} / \mathrm{s}$. When the velocities of the particles match, what is their velocity?

Solution

Let's compute the velocity of the particle 1.
$x_{1}(t)=9 t^{2}+6 t+5$
$V_{1}(t)=(x(t))^{\prime}=\left(9 t^{2}+6 t+5\right)^{\prime}=18 t+6$
Velocity of the particle 2 can be expressed as:
$V_{2}(t)=\int a(t) d t$, where V_{0} is the initial velocity of the particle 2.
We know that:
$a(t)=-8 t$
$V_{2}(0)=20$, then:
$V_{2}(t)=\int-8 t d t=-4 t^{2}+C$
$V_{2}(0)=C=20$
$V_{2}(t)=20-4 t^{2}$
So, we should solve the equation:
$V_{1}(t)=V_{2}(t)$
$18 t+6=20-4 t^{2}$
$4 t^{2}+18 t-14=0$
$2 t^{2}+9 t-7=0$
$D=81+56=137$
$t_{1}=\frac{-9+\sqrt{137}}{4} t_{2}=\frac{-9-\sqrt{137}}{4}$
$t_{2}<0 \Rightarrow t_{1}$ is a unique solution
$t_{1} \approx 0,676(s)$

Answer

0,676s
http://www.AssignmentExpert.com/

