Answer on Question \#51372 - Physics, Mechanics - Kinematics - Dynamics:

An object falls a distance h from rest. If it travels $0.55 h$ in the last 1.00 s , find (a) the time and (b) the height of its fall.

Solution.

Let t be the time of fall. We have that free fall is a uniformly accelerated motion with an acceleration of gravity. So:

$$
h=\frac{g t^{2}}{2}
$$

An object travels $0.55 h$ in the last 1.00 s , so it travels $0.45 h$ in the first $t-1 \mathrm{~s}$. Hence:

$$
0.45 h=\frac{g(t-1)^{2}}{2} \Rightarrow h=\frac{g(t-1)^{2}}{0.9}
$$

So we have an equation with respect to t :

$$
\begin{gathered}
\frac{g t^{2}}{2}=\frac{g(t-1)^{2}}{0.9} \Rightarrow \frac{t^{2}}{2}=\frac{(t-1)^{2}}{0.9} \Rightarrow \frac{9 t^{2}}{20}=(t-1)^{2} \Rightarrow \frac{3 t}{\sqrt{20}}=t-1 \Rightarrow \\
\Rightarrow \frac{3 t}{2 \sqrt{5}}=t-1 \Rightarrow\left(1-\frac{3}{2 \sqrt{5}}\right) t=1 \Rightarrow t=\frac{1}{1-\frac{3}{2 \sqrt{5}}} \Rightarrow t=\frac{2 \sqrt{5}}{2 \sqrt{5}-3} \Rightarrow \\
\Rightarrow t=\frac{2 \sqrt{5}(2 \sqrt{5}+3)}{11} \Rightarrow t=\frac{20+6 \sqrt{5}}{11} \approx 3.04 \mathrm{~s}
\end{gathered}
$$

Now find h. Assume that $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$:

$$
h=\frac{g t^{2}}{2}=\frac{9.8 \cdot(20+6 \sqrt{5})^{2}}{2 \cdot 121} \approx 45.22 \mathrm{~m}
$$

Answer.

$t=3.04 \mathrm{~s}, h=45.22 \mathrm{~m}$.

