Answer on Question \#51371-Physics-Mechanics-Kinematics-Dynamics

A ball of moist clay falls $h=17.5 \mathrm{~m}$ to the ground. It is in contact with the ground for $t=19.0 \mathrm{~ms}$ before stopping. (a) What is the average acceleration of the ball during the time it is in contact with the ground? (Treat the ball as a particle.)
(b) Is the average acceleration up or down?

Solution

(a) The speed of the ball before the contact is

$$
v=\sqrt{2 g h}
$$

where $g=9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ is the acceleration due to the gravity.
The average acceleration of the ball during the time it is in contact with the ground is

$$
\bar{a}=\frac{v_{f}-v_{i}}{t}=\frac{0-\sqrt{2 g h}}{t}=-\frac{\sqrt{2 \cdot 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 17.5 \mathrm{~m}}}{19.0 \cdot 10^{-3} \mathrm{~s}}=-975 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

(b) The sign "-" in average acceleration means that it directed up (the velocity of the ball before the contact is down, but the final velocity of the ball is zero).

