Answer on Question \#51370, Physics, Mechanics | Kinematics | Dynamics

Task: A bolt is dropped from a bridge under construction, falling 95 m to the valley below the bridge. (a) How much time does it take to pass through the last 26% of its fall? What is its speed (b) when it begins that last 26 \% of its fall and (c) just before it reaches the ground?

Solution:

So 26% of 95 is 24.7 m . But we need to know total time for the free-fall first.

So using our trusty old acceleration and distance equation where initial distance and initial velocity are both 0 .
$h=V_{0+} V_{0} t+g t^{2} / 2$
$95 \mathrm{~m}=0+0+9.8^{*} \mathrm{t}^{2} / 2$
$95 \mathrm{~m}=4.9 \mathrm{t}^{2}$
$19.39=t^{2}$
$t=4.403$ seconds for it to fall the whole 95 m
Now the last 26% of its fall means it has already fallen $95-(0.26 * 95)=70.3 \mathrm{~m}$
So we want to know the time it takes for the bolt to fall 70.3 m now.
With initial velocity and distance still equal to zero
$70.3 \mathrm{~m}=4.9 \mathrm{t}^{\wedge} 2$
t for 72 m is 3.787 s
So $4.403-3.787=0.616$ s to fall the rest of the last 26% of its fall
b) Well since it has traveled 70.3 m in 3.787 seconds, then
$v=70.3 / 3.787$
$v=18.56 \mathrm{~m} / \mathrm{s}$
c) 95 m in 4.403 s means
$v=95 / 4.403$
$v=21.58 \mathrm{~m} / \mathrm{s}$

