## Answer on Question\#51369, Physics, Mechanics | Kinematics | Dynamics

The equations of motion of a stone are $y(t)=H-v_{0} t-\frac{g t^{2}}{2}, \quad v(t)=v_{0}+g t \quad$, where $H=40 m \quad, \quad v_{0}=13 \frac{m}{s} \quad, \quad g=9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.
a) When the stone reaches the ground, $y(t)=40-13 t-(9.81) \frac{t^{2}}{2}=0$. Solving this quadratic equation, obtain $t \approx 1.82 s-$ it takes this time for stone to reach the ground.
b) Using second equation of motion, obtain $v(1.82) \approx 30.85 \frac{\mathrm{~m}}{\mathrm{~s}}$ - that is the speed of the stone at impact.

