At a construction site a pipe wrench struck the ground with a speed of $27 \mathrm{~m} / \mathrm{s}$. (a) From what height was it inadvertently dropped?

Solution.

From the energy conservation law we have that at the ground level all potential energy is transformed to kinetic energy:

$$
m v^{2} / 2=m g h \quad,
$$

$$
h=\frac{v^{2}}{2 g}=(27 \mathrm{~m} / \mathrm{s})^{2} /\left(2 * 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=37.19 \mathrm{~m}
$$

Answer.

$$
h=37.2 \mathrm{~m}
$$

(b) How long was it falling?

Solution.

We right the second Newton's law:
$m d^{2} / d t^{2} x=-m g$,
solving it we obtain
$x=-g t^{2} / 2+v_{0} t+x_{0}$.
Initial coordinate is $x_{0}=h$,
and initial speed is zero
$v_{0}=0$
At the ground level $\quad x=0$,
$0=-g t^{2} / 2+h$
$t=\sqrt{\frac{2 h}{g}}=\sqrt{\frac{2 * 37.2 \mathrm{~m}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}}=2.76 \mathrm{~s}$

Answer.

$t=2.8 \mathrm{~s}$

