Question

You are arguing over a cell phone while trailing an unmarked police car by 26.0 m ; both your car and the police car are traveling at $120 \mathrm{~km} / \mathrm{h}$. Your argument diverts your attention from the police car for 2.0 s (long enough for you to look at the phone and yell, "I won't do that!"). At the beginning of that 2.0 s , the police officer begins braking suddenly at $5.20 \mathrm{~m} / \mathrm{s}^{2}$. (a) What is the separation between the two cars when your attention finally returns? Suppose that you take another 0.500 s to realize your danger and begin braking. (b) If you too brake at $5.20 \mathrm{~m} / \mathrm{s}^{2}$, what is your speed when you hit the police car?

Solution

a) $\mathrm{I}=26 \mathrm{~m} ; \quad \mathrm{V}_{01}=\mathrm{v}_{02}=\mathrm{v}=120 \mathrm{~km} / \mathrm{h} \approx 33.333 \mathrm{~m} / \mathrm{s} ; \quad \mathrm{t}=2 \mathrm{~s}, \quad \mathrm{a}_{1}=0 ; \quad \mathrm{a}_{2}=\mathrm{a}=5.2 \mathrm{~m} / \mathrm{s}^{2}$.

Our car: $\quad x_{1}=v_{01} t=v t$.
Police car: $x_{2}=1-v_{02} t+a_{2} t^{2} / 2=1-v t+a t^{2} / 2$.
The separation between the two cars: $\Delta x=x_{2}-x_{1}=1-2 v t+a t^{2} / 2=-96.932 \mathrm{~m}$.
It means that cars hit before end of 2 s . Answer: $\boldsymbol{\Delta x}=\mathbf{0}$.
b) The speed of our car is $\mathbf{3 3 . 3 3 3 \mathrm { m } / \mathrm { s } \text { , because we can't return our attention (cars hit before } { } ^ { \text { b } } \text { , }}$ end of 2 s). Answer: $\mathbf{v}=\mathbf{v}_{\mathbf{0 1}}=\mathbf{1 2 0} \mathbf{~ k m} / \mathrm{h} \boldsymbol{\mathbf { ~ }} \mathbf{3 3 . 3 3 3} \mathbf{~ m} / \mathrm{s}$.
P.S. I guess condition of the problem contain mistake. I think initial separation between the two cars is bigger. Please check it and if you want write me back, l'll do it again.

