Question \#51365, Physics, Mechanics | Kinematics | Dynamics

A car traveling $54.3 \mathrm{~km} / \mathrm{h}$ is 24.3 m from a barrier when the driver slams on the brakes. The car hits the barrier 2.14 s later. (a) What is the car's constant deceleration magnitude before impact? (b) How fast is the car traveling at impact?

Answer.

$S=V_{0} t-\frac{a t^{2}}{2}, V=V_{0}-a t$.
In our case:
$S=24.3 \mathrm{~m}, \quad V_{0}=54.3 \frac{\mathrm{~km}}{\mathrm{~h}}=54.3 * \frac{1000}{60 * 60}=15.08 \frac{\mathrm{~m}}{\mathrm{~s}}, \quad t=2.14 \mathrm{~s}$.
(a) $\quad a=\frac{2(V t-S)}{t^{2}}=\frac{2(15.08 * 2.14-24.3)}{2.14^{2}}=3.48 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
(b) $V=15.08-3.48 * 2.14=7.63 \frac{\mathrm{~m}}{\mathrm{~s}}$

