1. An electron has a constant acceleration of $+2.9 \mathrm{~m} / \mathrm{s}^{\wedge} 2$. At a certain instant its velocity is $+8.7 \mathrm{~m} / \mathrm{s}$. What is its velocity (a) 1.6 s earlier and (b) 1.6 s later?
$a=2.9 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$v_{0}=8.7 \frac{\mathrm{~m}}{\mathrm{~s}}$

$\Delta t=1.6 \mathrm{~s}$
$v_{1}, v_{2}-?$

Solution.

The projection of the velocity of an electron is $v_{x}=v_{0}+a t$.
The projection of the velocity at time $t=-\Delta t$ and $t=\Delta t$ are $v_{1}=v_{0}-a \cdot \Delta t, \quad v_{2}=v_{0}+a \cdot \Delta t$.

Let check the dimension: $\left[v_{1}\right]=\left[v_{2}\right]=\frac{m}{s}-\frac{m}{s^{2}} \cdot s=\frac{m}{s}$.
Let evaluate the quantity:
$v_{1}=8.7-2.9 \cdot 1.6=4.06\left(\frac{\mathrm{~m}}{\mathrm{~s}}\right), \quad v_{2}=8.7+2.9 \cdot 1.6=13 \cdot 34\left(\frac{\mathrm{~m}}{\mathrm{~s}}\right)$.
Answer: $4.06 \frac{\mathrm{~m}}{\mathrm{~s}}, \quad 13.34 \frac{\mathrm{~m}}{\mathrm{~s}}$.

