Answer on Question \#51295, Physics, Mechanics | Kinematics | Dynamics

The moment of inertia of a thin uniform rod of mass M and length L about an axis passing through it's midpoint and perpendicular to its length is I its moment of inertia about an axis passing through one of its ends perpendicular to it's length is..?

Solution:

The moment of inertia of a rod of mass M and length L about an axis, perpendicular to its length, which passes through its midpoint is

$$
I=\frac{1}{12} M L^{2}
$$

This is a standard result. Using the parallel axis theorem, the moment of inertia about a parallel axis passing through one of the ends of the rod is

$$
I^{\prime}=I+M\left(\frac{L}{2}\right)^{2}=\frac{1}{3} M L^{2}=4 I
$$

Answer: $I^{\prime}=4 I$

