Answer on Question \#51294, Physics, Mechanics | Kinematics | Dynamics

Find the moment of inertia of semicircular wire of mass ' M ' and radius ' R ' about an axis through the centre and perpendicular to the plane.

Solution:

The definition of moment of inertia is

$$
I=\int R^{2} d m
$$

where R is the distance of the mass element $d m$ from the axis about which the moment is to be computed.

$$
\pi R=l
$$

Thus,

$$
R=\frac{l}{\pi}
$$

The mass element dm is

$$
d m=\rho * d l
$$

where ρ is the linear density of the wire, and $d l$ the element of length along the wire: $d l=R d \theta$

$$
\begin{gathered}
d m=\rho(R d \theta) \\
I=\int_{0}^{\pi} R^{2} \rho(R d \theta)=R^{3} \rho \int_{0}^{\pi} d \theta=R^{3} \rho \pi
\end{gathered}
$$

To compare with the table value, the mass of the wire $M=\pi R \rho$, so

$$
I=m R^{2}
$$

Answer: $I=m R^{2}$

