

Answer on Question #51292, Physics, Mechanics | Kinematics | Dynamics

Consider two different radio station which broadcast signals whose angular frequency differs by f hertz. They are received by a receiver at origin. Determine the time for which receiver remains idle in each cycle if it can detect amplitude more than $1.5 A_0$ only.

Solution:

Consider the superposition of two signals of different frequencies

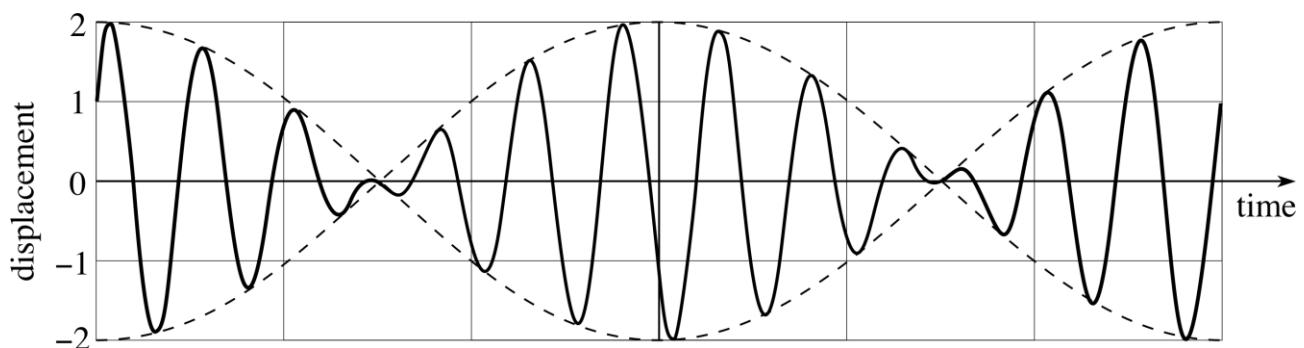
$$A(t) = A_0 \cos(\omega_1 t) + A_0 \cos(\omega_2 t)$$

The addition of the two cosines now gives

$$A(t) = 2A_0 \cos\left(\frac{\omega_1 t - \omega_2 t}{2}\right) \cos\left(\frac{\omega_1 t + \omega_2 t}{2}\right)$$

i.e.

$$A(t) = 2A_0 \cos\left(\frac{(\omega_1 - \omega_2)t}{2}\right) \cos\left(\frac{(\omega_1 + \omega_2)t}{2}\right)$$


From given

$$\omega_1 - \omega_2 = f$$

Hence

$$A(t) = 2A_0 \cos\left(\frac{ft}{2}\right) \cos\left(\frac{(\omega_1 + \omega_2)t}{2}\right)$$

In this case $|\omega_1 - \omega_2| \ll (\omega_1 + \omega_2)$ the first cosine function is a slowly varying function of time, as compared with the rapidly varying second cosine function.

The displacement – time graph of this superposition of signals is shown in Figure for the case where the two equal amplitude original oscillations have frequencies in the ratio $13 : 11$.

The slow periodic amplitude oscillations are referred to as beats. The beat frequency is equal to $|\omega_1 - \omega_2|/2\pi$.

The time for which receiver remains idle in each cycle if it can detect amplitude more than $1.5A_0$ only is in period where

$$\begin{aligned} \left|2A_0 \cos\left(\frac{ft}{2}\right)\right| &\leq 1.5A_0 \\ \left|\cos\left(\frac{ft}{2}\right)\right| &\leq 0.75 \\ -0.75 &\leq \cos\left(\frac{ft}{2}\right) \leq 0.75 \end{aligned}$$

From $\cos\left(\frac{ft}{2}\right) = -0.75$ we obtain

$$\frac{ft}{2} = \cos^{-1}(-0.75) = 2.419$$
$$t_{-0.75} = 2 * \frac{2.4189}{f} = \frac{4.8378}{f}$$

From $\cos\left(\frac{ft}{2}\right) = 0.75$ we obtain

$$t_{0.75} = 2 * \frac{0.7227}{f} = \frac{1.4454}{f}$$

Time is

$$t = t_{-0.75} - t_{0.75} = \frac{1}{f}(4.8378 - 1.4454) = \frac{3.3924}{f}$$

Answer: $t = \frac{3.3924}{f}$