Answer on Question \#51235, Physics, Solid State Physics

Task: The direct lattice vectors for a lattice are given by:
$\vec{a}_{1}=a \hat{i} ; \vec{a}_{2}=\frac{a}{2}[\hat{i}+\sqrt{3} \hat{j}] ; \vec{a}_{3}=c \vec{k}$
Obtain the volume of the primitive cell and the reciprocal lattice vectors.

Answer:

For a given direct lattice we can define a reciprocal lattice in terms of three primitive reciprocal vectors: b_{1}, b_{2} and b_{3} which are related to the direct lattice vectors a_{1}, a_{2} and a_{3} by $\vec{b}_{i}=2 \pi \frac{\left(a_{j} \times a_{k}\right)}{\left(a_{1} \times a_{2}\right) \cdot a_{3}}$, where i, j and k represent a cyclic permutation of the three indices 1,2 and 3 and $\left(a_{1} \times a_{2}\right) \cdot a_{3}$ is the volume of the primitive cell.

So $\vec{a}_{1}=(a ; 0 ; 0) ; \vec{a}_{2}=\left(\frac{a}{2} ; \frac{a \sqrt{3}}{2} ; 0\right) ; \vec{a}_{3}=(0 ; 0 ; c)$
The volume of the primitive cell $V_{\text {cell }}=\left(a_{1} \times a_{2}\right) \cdot a_{3}=\left|\begin{array}{ccc}a & 0 & 0 \\ \frac{a}{2} & \frac{a \sqrt{3}}{2} & 0 \\ 0 & 0 & c\end{array}\right|=\frac{a^{2}}{c} \frac{\sqrt{3}}{2}$
$\vec{b}_{1}=2 \pi \frac{\left(\vec{a}_{2} \times \vec{a}_{3}\right)}{V_{\text {cell }}}=\frac{2 \pi}{\frac{a^{2} \sqrt{3}}{2 c}}\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ \frac{a}{2} & \frac{a \sqrt{3}}{2} & 0 \\ 0 & 0 & c\end{array}\right|=\frac{4 \pi c}{a^{2} \sqrt{3}}\left[\frac{a c \sqrt{3}}{2} \widehat{i}-\frac{a c}{2} \hat{j}\right]=\frac{4 \pi c^{2}}{2 a \sqrt{3}}[\sqrt{3} \widehat{i}-\hat{j}]$
$\vec{b}_{2}=2 \pi \frac{\left(\vec{a}_{1} \times \vec{a}_{3}\right)}{V_{\text {cell }}}=\frac{2 \pi}{\frac{a^{2} \sqrt{3}}{2 c}}\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ a & 0 & 0 \\ 0 & 0 & c\end{array}\right|=\frac{4 \pi c}{a^{2} \sqrt{3}}[-a c \hat{j}]=-\frac{4 \pi c^{2}}{a \sqrt{3}} \widehat{j}$
$\vec{b}_{3}=2 \pi \frac{\left(\vec{a}_{2} \times \vec{a}_{1}\right)}{V_{\text {cell }}}=\frac{2 \pi}{\frac{a^{2} \sqrt{3}}{2 c}}\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ \frac{a}{2} & \frac{a \sqrt{3}}{2} & 0 \\ a & 0 & 0\end{array}\right|=\frac{4 \pi c}{a^{2} \sqrt{3}}\left[\frac{a^{2} \sqrt{3}}{2} \hat{k}\right]=2 \pi c \hat{k}$

