Answer on Question \#51234, Physics, Solid State Physics

A crystal has a cubic unit cell of $4.2 \AA$. Using a wavelength of $1.54 \AA$ at what angle θ would you expect to measure the (111) peak?

Solution:

$1 / d^{2}=h^{2} / a^{2}+k^{2} / b^{2}+l^{2} / c^{2}$ so for the (111) of a cubic cell $d_{111}=a / \sqrt{3}$. Applying the Bragg condition for diffraction: $\lambda=2 d_{n k} \sin \theta_{h k}$.

Therefore:
$\theta=\arcsin \left(\frac{\lambda}{2 d_{b k}}\right)=\arcsin \left(\frac{1.54 \cdot 10^{-10}}{2 \cdot 4.2 \cdot 10^{-10}}\right)=18.5^{\circ}$
Answer: Thus $\theta=18.5^{\circ}$ and the peak is measured at $2 \theta=37^{\circ}$

