Answer on Question #51221, Physics, Other

An electron has a deBroglie wavelength equal to that of a photon. Show that the ratio of the kinetic energy of the electron to the energy of the photon is

$$[(m^2c^4 + h^2v^2)^{1/2} - mc^2]/(hv)$$

Solution:

For electron,

 $\lambda = \frac{h}{mv}$ $v = \frac{h}{m\lambda}$

with

 $\lambda = \frac{c}{\nu}$

Thus, velocity is

 $v = \frac{hv}{mc}$

Now, kinetic energy

 $K = \frac{1}{2}mv^2 = \frac{m}{2} \left[\frac{hv}{mc} \right]^2$

i.e.

$$\begin{split} K_e &= \frac{h^2 v^2}{2mc^2} = mc^2 + \frac{h^2 v^2}{2mc^2} - mc^2 = mc^2 \left[1 + \frac{h^2 v^2}{2m^2 c^4} \right] - mc^2 = \\ &= mc^2 \left[1 + \frac{h^2 v^2}{m^2 c^4} \right]^{\frac{1}{2}} - mc^2 = mc^2 \left[\frac{m^2 c^4 + h^2 v^2}{m^2 c^4} \right]^{\frac{1}{2}} - mc^2 \end{split}$$

$$K_e = (m^2c^4 + h^2v^2)^{\frac{1}{2}} - mc^2$$

For photon,

$$K_p = h\nu$$

Thus,

$$\frac{K_e}{K_p} = \frac{(m^2c^4 + h^2v^2)^{\frac{1}{2}} - mc^2}{hv}$$