

Answer on Question #51190, Physics, Mechanics | Kinematics | Dynamics

In the wave equation $y = A \sin(wt + kx)$, the quantity $(wt + kx)$ represents the symbols have the usual meaning

Answer:

$$y(t, x) = A \cdot \sin(\varphi_0 + \varphi(t) + \varphi(x))$$

A is the amplitude, φ_0 is the initial phase, $\varphi(t)$ time defined phase, $\varphi(x)$ space defined phase.

And the sum of these phases is called just as phase.

$$\varphi_0 + \varphi(t) + \varphi(x) = \varphi$$

In this problem

$$y(t, x) = A \cdot \sin(wt + kx)$$

$$\varphi = wt + kx$$

It is the phase of the oscillation in this wave at some time at some point of space.