

Answer on Question #51173, Physics, Electromagnetism

Let the positive charge $q_1=2\mu C$ be on the left on the ox axis and negative charge $q_2=-1\mu C$ be on the right. The distance between charges is $d=20\text{ cm}=0.2\text{ m}$.

The potential created by point charge at distance r from it is $\varphi=\frac{kq_1}{r}$, where $k=\frac{1}{4\pi\epsilon_0}$ in

SI system. Let the distance where the sum of the potentials created by two charges is zero be x (measuring the distance from positive charge). The potential created by positive charge at that point is $\varphi_1=\frac{kq_1}{x}$ and created by negative charge is $\varphi_2=\frac{kq_2}{d-x}$.

The sum of two must be equal to zero, thus $\varphi_1+\varphi_2=k\left(\frac{q_1}{x}+\frac{q_2}{d-x}\right)=0$, or $\frac{(d-x)q_1+xq_2}{x(d-x)}=0$,

from where $x=\frac{-d q_1}{q_2 - q_1} \approx 0.133\text{ m}=13.3\text{ cm}$.