Answer on Question \#51172-Physics-Electromagnetism

Let the charges Q and $-Q$ be placed alternatively along the x-axis at positions $x=1 m, x=3 m, x=6 m$ and x $=9 \mathrm{~m}$. What is the electric field at $\mathrm{x}=0$ due to these charges?

Solution

According to the principle of superposition the electric field at $x=0$ due to these charges is

$$
E=k \sum \frac{q_{i}}{r^{2}}=k\left(\frac{Q}{(1-0)^{2}}-\frac{Q}{(3-0)^{2}}+\frac{Q}{(6-0)^{2}}-\frac{Q}{(9-0)^{2}}\right)=k Q\left(1-\frac{1}{9}+\frac{1}{36}-\frac{1}{81}\right)=\frac{293}{324} k Q
$$

The electric field at $x=0$ has directed negatively.

