A time varying magnetic field $\mathrm{B}(\mathrm{t})=\mathrm{BO}$ coswt
r r
pointing out of the page fills the region enclosed by a circle of radius a shown in the figure below. Determine the induced electric field.

Solution.

We are going to calculate the electric field straight on the edge of the circle with radius r . We right down the Faraday's law:

$$
\oint \vec{E} \cdot \vec{l}=\frac{d}{d t} \int \vec{B} \cdot d \vec{A}
$$

Now we evaluate the path integral, which is rather simple due to the radial symmetry:

$$
\oint \vec{E} \cdot \vec{l}=2 \pi E r
$$

The change of the flux:

$$
\frac{d}{d t} \int \vec{B} \cdot d \vec{A}=|d B / d t| \pi r^{2}
$$

We combine E and B and obtain

$$
E=\left|\frac{d B(t)}{d t}\right| \cdot \frac{r}{2}=B_{0} \omega|\sin (\omega t)| \cdot \frac{r}{2}
$$

Answer.

$$
E=B_{0} \omega|\sin (\omega t)| \cdot \frac{r}{2}
$$

