Answer to Question \#51117 - Physics - Electric - Circuits

Let the charges Q and $-Q$ be placed alternatively along the x-axis at positions $x=1 \mathrm{~m}, x=3 \mathrm{~m}, \mathrm{x}=6 \mathrm{~m}$ and $\mathrm{x}=9 \mathrm{~m}$. What is the electric field at $\mathrm{x}=0$ due to these charges?

Solution
$E=k \frac{q}{r^{2}} ; \quad k=\frac{1}{4 \pi \epsilon_{0}} \frac{N \cdot m^{2}}{C^{2}} ;$
$x=1: \quad E_{1}=Q k ;$
$x=3: \quad E_{2}=-\frac{Q k}{9} ;$
$x=6: \quad E_{3}=\frac{Q k}{36} ;$
$x=9: \quad E_{4}=-\frac{Q k}{81} ;$
$E=\sum_{i=0}^{4} \overline{E_{i}}=Q k-\frac{Q k}{9}+\frac{Q k}{36}-\frac{Q k}{81}=\frac{293}{324} Q k=\frac{293 \cdot Q}{1296 \cdot \pi \epsilon_{0}}=Q \cdot 8127631710 \mathrm{~V} ;$

Answer: $E=Q \cdot 8127631710$ V;

