A man weighs 750 N on the surface of the Earth. What would be his weight when standing on the Moon? The masses of the earth and the moon are respectively, $5.98 \times 10^{24} \mathrm{~kg}$ and $7.36 \times 10^{22} \mathrm{~kg}$. Their radii are respectively $6.37 \times 10^{3} \mathrm{~km}$ and $1.74 \times 10^{3} \mathrm{~km}$.

Solution.

We write the Newton`s law of universal gravitation:

$$
F=G \frac{m_{1} m_{2}}{r_{1,2}}
$$

where G is the is the gravitational constant. Particularly, for a man on the Earth surface,

$$
F_{E}=G \frac{m M_{E}}{R_{E}}
$$

and on the Moon surface:

$$
F_{M}=G \frac{m M_{M}}{R_{M}}
$$

where m is the mass of a man, $M_{E, M}$ and $R_{E, M}$ are the masses and radii of the Earth and the Moon respectively. Dividing these equations one to another, we obtain

$$
F_{M}=F_{E} \frac{M_{M} R_{E}^{2}}{M_{E} R_{M}^{2}}
$$

Putting figures into the final equation, we have:

$$
F_{M}=700 \mathrm{~N} \frac{7.36 \times 10^{22} \mathrm{~kg}\left(6.37 \times 10^{3} \mathrm{~km}\right)^{2}}{5.98 \times 10^{24} \mathrm{~kg}\left(1.74 \times 10^{3} \mathrm{~km}\right)^{2}}=123.7 \mathrm{~N} .
$$

Answer.

$F_{M}=123.7 \mathrm{~N}$.

