## Answer on Question \#51081, Physics, Mechanics | Kinematics | Dynamics

## Question:

A 2000 kg satellite orbits the earth at a height of 300 km . What is the speed of the satellite and its period? Take $G=6: 67 \times 10-11 \mathrm{Nm} 2=\mathrm{kg} 2$, Mass of the earth is 5:98 x 1024 kg .

## Answer:

Newton's second law of motion:

$$
\frac{m v^{2}}{R+h}=\frac{G M m}{(R+h)^{2}}
$$

where $\frac{v^{2}}{R+h}$ is centripetal acceleration, $R$ is radius of Earth
Therefore, speed of motion equals:

$$
v=\sqrt{\frac{G M}{R+h}}=7730 \frac{\mathrm{~m}}{\mathrm{~s}}=7.73 \frac{\mathrm{~km}}{\mathrm{~s}}
$$

Period equals:

$$
T=\frac{2 \pi(R+h)}{v}=2 \pi \sqrt{\frac{(R+h)^{3}}{G M}} \cong 5420 \mathrm{~s}
$$

