51000, Physics, Other

Question An object is rolled up an incline. If the object is 2.75 m up the incline after 4.50 s and rolling back down at a velocity of $1.90 \mathrm{~m} / \mathrm{s}$, what is the acceleration of the object?

Solution We will need two equation here: equation of motion and equation for velocity. Here they are

$$
\begin{gathered}
s(t)=v_{0} t-a t^{2} / 2 \\
v(t)=v_{0}-a t
\end{gathered}
$$

where v_{0} is initial velocity and a is needed acceleration. We know that at moment $t_{1}=4.5 \mathrm{~s}$ velocity was $v_{1}=-1.9 \mathrm{~m} / \mathrm{s}$ and distance was $s_{1}=2.75$. So we substitute it and we get

$$
\begin{gathered}
s_{1}=v_{0} t_{1}-a t_{1}^{2} / 2 \\
v_{1}=v_{0}-a t_{1}
\end{gathered}
$$

Now we can solve them for a:

$$
\begin{gathered}
v_{0}=v_{1}+a t_{1} \\
s_{1}=\left(v_{1}+a t_{1}\right) t_{1}-a t_{1}^{2} / 2 \\
s_{1}=v_{1} t_{1}+a t_{1}^{2} / 2
\end{gathered}
$$

And we find acceleration:

$$
a=2\left(s_{1}-v_{1} t_{1}\right) / t_{1}^{2} \approx-0.57 \mathrm{~m} / \mathrm{s}^{2}
$$

