

Answer on Question #50854- Physics-Electromagnetism

A time varying magnetic field $\vec{B}(t) = \vec{B}_0 \cos \omega t$ pointing out of the page fills the region enclosed by a circle of radius a shown in the figure below. Determine the induced electric field.

Solution

According to Lenz's law, the direction of \vec{E}_{ind} must be such that it would drive the induced current to produce a magnetic field opposing the change in magnetic flux. With the area vector \vec{A} pointing in the page, the magnetic flux is negative or inward. In the region $r < a$, the rate of change of magnetic flux is

$$\frac{d\Phi}{dt} = \frac{d}{dt}(\vec{B} \cdot \vec{A}) = \frac{d}{dt}(-AB) = -\frac{dB}{dt}\pi r^2.$$

$$\oint \vec{E}_{ind} d\vec{s} = E_{ind} \cdot 2\pi r = -\frac{d\Phi}{dt} = \frac{dB}{dt}\pi r^2.$$

which implies

$$E_{ind} = \frac{r}{2} \frac{dB}{dt} = -\omega \frac{r}{2} B_0 \sin \omega t.$$

Similarly, for $r > a$, the induced electric field may be obtained as

$$E_{ind} \cdot 2\pi r = -\frac{d\Phi}{dt} = \frac{dB}{dt}\pi a^2.$$

$$E_{ind} = \frac{a^2}{2r} \frac{dB}{dt} = -\omega \frac{a^2}{2r} B_0 \sin \omega t.$$