

Answer on Question #50804-Physics-Mechanics-Kinematics-Dynamics

If a $H = 3 \text{ m}$ deep well is half filled with water, then how much time needed to raise $m = 2 \text{ kg}$ water with a $P = 10 \text{ kW}$ pump whose efficiency is $\eta = 70\%$?

Solution

To up the mass $dm = \rho Adh$ of water from the depth h , where A is area, we need energy

$$dE = dmgh = \rho Adhgh = (\rho gA)h dh.$$

To fulfill the well we need

$$E = \int_0^H (\rho gA)h dh = (\rho gA) \frac{h^2}{2} \Big|_0^H = (\rho gA) \frac{H^2}{2} = \frac{mgH}{2}.$$

The efficient power is

$$\eta P = \frac{E}{t}.$$

Thus

$$t = \frac{E}{\eta P} = \frac{mgH}{2\eta P} = \frac{2 \cdot 9.8 \cdot 3}{2 \cdot 0.7 \cdot 10000} = 4.2 \text{ ms.}$$

Answer: 4.2 ms.