1. When the electromagnetic radiation of frequency $4*10^{15}$ Hz and $6*10^{15}$ Hz fall on a same metal in different experiment, the ratio of the maximum kinetic energy of electron liberated 1:3. What is the threshold frequency for the metal?

 $v_1 = 4 \cdot 10^{15} \, GHz$ Solution. $v_2 = 6 \cdot 10^{15} \, GHz$ According to the law of the photoelectric effect, $E_1 : E_2 = 1 : 3$ $hv_1 = A + E_1, \quad hv_2 = A + E_2,$ $v_{th} - ?$ where A is the work function for the given metal, E_1, E_2 are maximum kinetic energies of a photoelectron.

After subtracting one can get that

$$hv_{1} - hv_{2} = E_{1} - E_{2}, \quad h(v_{1} - v_{2}) = E_{1} - E_{1}/3, \quad E_{1} = \frac{3h}{2}(v_{1} - v_{2}).$$

The work function is $A = hv_{1} - E_{1} = hv_{1} - \frac{3h}{2}(v_{1} - v_{2}) = \frac{h}{2}(3v_{2} - v_{1}).$
For the threshold frequency, $hv_{th} = A.$
Thus, the threshold frequency for the metal is $v_{th} = \frac{A}{h}, \quad v_{th} = \frac{3v_{2} - v_{1}}{2}.$
Let check the dimension: $[v_{th}] = GHz.$
Let evaluate the quantity: $v_{th} = \frac{3 \cdot 6 \cdot 10^{15} - 4 \cdot 10^{15}}{2} = 7 \cdot 10^{15} (GHz).$
Answer: $7 \cdot 10^{15} GHz.$

https://www.AssignmentExpert.com