50744, Physics, Optics

Question Show that: 1) $u=e^{x} \sin y$ is a solution of Laplace's equation. 2) $u=x^{2}+t^{2}$ is a solution of the wave equation.

Solution 1.Laplace equation is

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

Let us substitute given function. We get

$$
\frac{\partial^{2}\left(e^{x} \sin y\right)}{\partial x^{2}}+\frac{\partial^{2}\left(e^{x} \sin y\right)}{\partial y^{2}}=e^{x} \sin y+\frac{\partial\left(e^{x} \cos y\right)}{\partial y}=e^{x} \sin y-e^{x} \sin y=0
$$

So, it satisfies Laplace equation.
2. Wave equation is

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

Let us substitute given function. We get

$$
\begin{gathered}
\frac{\partial^{2}\left(x^{2}+t^{2}\right)}{\partial t^{2}}-c^{2} \frac{\partial^{2}\left(x^{2}+t^{2}\right)}{\partial x^{2}}= \\
=2 \frac{\partial t}{\partial t}-c^{2} \frac{\partial x}{\partial x}=1-c^{2}=0
\end{gathered}
$$

So, it satisfies wave equation, if $c^{2}=1$.

