Answer on Question \#50741, Physics, Other

A series circuit consists of a resistor with $R=20 \mathrm{ohm}$, an inductor with $L=1 \mathrm{H}$, a capacitor with $\mathrm{C}=0.002 \mathrm{~F}$, and a 12 V battery. IF the initial charge and current are both 0 , find the charge and current at time t .

Solution:

Consider a series RLC circuit (one that has a resistor, an inductor and a capacitor) with a constant driving electro-motive force (emf) E. The current equation for the circuit is

$$
L \frac{d i}{d t}+R i+\frac{Q}{C}=E
$$

Since, this equation becomes

$$
L \frac{d^{2} Q}{d t^{2}}+\frac{R d Q}{d t}+\frac{Q}{C}=E
$$

With the given values of R, L, C and E, the last equation becomes

$$
\begin{aligned}
& \frac{d^{2} Q}{d t^{2}}+20 \frac{d Q}{d t}+\frac{Q}{0.002}=12 \\
& \frac{d^{2} Q}{d t^{2}}+20 \frac{d Q}{d t}+500 Q=12
\end{aligned}
$$

The auxiliary equation is

$$
r^{2}+20 r+500=0
$$

with roots

$$
\begin{aligned}
& r=-10-20 i \\
& r=-10+20 i
\end{aligned}
$$

so the solution of the complementary equation is

$$
Q_{c}(t)=e^{-10 t}\left(c_{1} \cos 20 t+c_{2} \sin 20 t\right)
$$

For the method of undetermined coefficients we try the particular solution

$$
\begin{gathered}
Q_{p}(t)=A \\
500 A=12
\end{gathered}
$$

or $A=\frac{3}{125}=0.024$
The general solution is

$$
Q(t)=Q_{c}(t)+Q_{p}(t)=e^{-10 t}\left(c_{1} \cos 20 t+c_{2} \sin 20 t\right)+0.024
$$

But

$$
\begin{gathered}
Q(0)=0=c_{1}+0.024 \\
c_{1}=-0.024
\end{gathered}
$$

The current

$$
\begin{gathered}
I(t)=Q^{\prime}(t)=e^{-10 t}\left[\left(-10 c_{1}+20 c_{2}\right) \cos 20 t+\left(-10 c_{2}-20 c_{1}\right) \sin 20 t\right] \\
I(0)=0=-10 c_{1}+20 c_{2}
\end{gathered}
$$

Thus

$$
c_{2}=\frac{c_{1}}{2}=-0.012
$$

Hence the charge is

$$
\begin{aligned}
Q(t)=e^{-10 t}(& -0.024 \cos 20 t-0.012 \sin 20 t)+0.024= \\
& =-0.012 e^{-10 t}(2 \cos 20 t+\sin 20 t)+0.024
\end{aligned}
$$

The current is

$$
\begin{aligned}
I(t)=Q^{\prime}(t) & =e^{-10 t}[(10 * 0.024-20 * 0.012) \cos 20 t+(10 * 0.012+20 * 0.024) \sin 20 t]= \\
& =e^{-10 t}(0.6) \sin 20 t
\end{aligned}
$$

$$
\text { Answer: } \begin{aligned}
Q(t) & =-0.012 e^{-10 t}(2 \cos 20 t+\sin 20 t)+0.024 \\
I(t) & =0.6 e^{-10 t} \sin 20 t
\end{aligned}
$$

