
Answer on Question #50692, Physics, Optics 

State salient features of single slit Fraunhofer diffraction pattern. The slit is vertical 

and illuminated by a point source. Also, obtain an expression for intensity 

distribution and plot it. 

Answer  

Fraunhofer diffraction deals with the limiting cases where the light approaching the 

diffracting object is parallel and monochromatic, and where the image plane is at a 

distance large compared to the size of the diffracting object. 

 

Fig.1 

Let a source of monochromatic light be incident on a slit of finite width a, as shown 

in Fig. 1.  

We will put a point source of light in the focus of a converging lens. Then after 

refraction in the lens  parallel beams will be obtained (see Fig.2). 

 

Fig.2 

In diffraction of  Fraunhofer type, all rays passing through the slit are approximately 

parallel. In addition, each portion of the slit will act as a source of light waves 



according to Huygens’s principle. For simplicity we divide the slit into two halves. At 

the first minimum, each ray from the upper half will be exactly 180
o
 out of phase 

with a corresponding ray form the lower half. For example, suppose there are 100 

point sources, with the first 50 in the lower half, and 51 to 100 in the upper half. 

Source 1 and source 51 are separated by a distance / 2a  and are out of phase with a 

path difference / 2  . Similar observation applies to source 2 and source 52, as 

well as any pair that are a distance / 2a  apart. Thus, the condition for the first 

minimum is  / 2 sin / 2a   . The argument can be generalized to show that 

destructive interference will occur when 

sina m        (1) 

where m . 

 

Fig.3 

We can use phasors to determine the light intensity distribution for a single-slit 

diffraction pattern.  Imagine a slit divided into a large number of small zones, each of 

width y  as shown at right. Each zone acts as a source of coherent radiation, and 

each contributes an incremental electric field of magnitude  E  at some point on  the  

screen.  We  obtain  the  total  electric  field  magnitude  E   at  a  point  on  the screen 

by summing the contributions from all the zones. The light intensity at this point  is  

proportional  to  the  square  of  the  magnitude  of  the  electric  field. 

The incremental electric field magnitudes between adjacent zones are out of phase 

with one another by an amount  , where the phase difference   is related to the 

path difference siny   between adjacent zones by an expression given by an 

argument similar to that leading to what we did with interference (Eq.(2)). 
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Fig.4 

To find the magnitude of the total electric field on the screen at any angle , we sum 

the incremental magnitudes E  due to each zone. For small values of  , we can 

assume that all the E  values are the same. It is convenient to use phasor diagrams 

for various angles, as shown at right. When 0  , all phasors are aligned as in Fig.4,a 

because all the waves from the various zones are in phase. In this case, the total 

electric field at the center of the screen is 0E N E  , where N  is the number of zones. 

The resultant  magnitude  RE   at  some  small  angle q is  shown  in  Fig. 4, b,  where  

each phasor differs in phase from an adjacent one by an amount  . In this case, RE  

is the vector  sum  of  the  incremental  magnitudes  and  hence  is  given  by  the  

length  of  the chord. Therefore, 0RE E . The total phase difference   between waves 

from the top and bottom portions of the slit is 
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where  a N y   is the width of the slit. 

As     increases,  the  chain  of  phasors  eventually  forms  the  closed  path  shown  

in Fig.4,c. At this point, the vector sum is zero, and so 0RE  , corresponding to the 

first minimum on the screen. Noting that 2N      in this situation, we see from 

the equation derived above that 
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That is, the first minimum in the diffraction pattern occurs where sin /dark a  ;  At  

larger  values  of   q,  the  spiral  chain  of  phasors  tightens.  For  example,  Fig. 4,d  

represents  the  situation  corresponding  to  the  second  maximum,  which  occurs 

when 0 0 0360 180 540    . The second minimum (two complete circles, not shown) 

corresponds to 0720  , which satisfies the condition 
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Fig.5 

We can obtain the total electric-field magnitude ER and light intensity I at any point 

on  the  screen  by  considering  the  limiting  case  in  which  y  becomes 

infinitesimal ( dy ) and N approaches infinity. In this limit, the phasor chains shown 

previously  become  the  curve  shown at right.  The  arc  length  of  the  curve  is 0E  

because  it  is the sum of the magnitudes of the phasors (which is the total electric 

field magnitude at the center of the screen). From Fig.5 , we see that at some angle  , 

the resultant electric  field  magnitude  ER  on  the  screen  is  equal  to  the  chord  

length.  From  the triangle containing the angle / 2 , we see that 
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where R  is the radius of curvature. But the arc length  0E  is equal to the product R , 

where is measured in radians. Combine this information with the previous expression 

to write an expression for RE  as a function of  0E  and   
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Fig.6 

Because the resultant light intensity I  (see Fig.6) at a point on the screen is 

proportional to the square of the magnitude RE  , we find that 
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