Answer on Question 50676, Physics, Molecular Physics | Thermodynamics

Question:

What is Brownian motion? Give three examples of such a motion. Using Einstein's theory, obtain an expression for Einstein's formula for mean square displacement of a Brownian particle.

Answer:

Brownian motion is the random movement of microscopic particles suspended in a liquid or gas caused by their collision with the quick atoms or molecules in the surrounding medium. Three examples of such a motion: motion of pollen grains in water, diffusion of "holes" through a semiconductor, motion of smoke in a glass box.

Let us obtain an expression for Einstein's formula for mean square displacement of a Brownian particle. When Brownian particle is move the net force F acts on it. Also on particle acts the friction force f caused by the medium viscosity and directed opposite to the force F.

Let us suppose that the particle has a spherical shape of radius a. Then the friction force f can be expressed by the Stokes' law:

$$
f=6 \pi \eta a v,
$$

where, η is the dynamic viscosity, v is the velocity of the particle.
So, we can write the equation of motion of the particle:

$$
m \ddot{r}=F-6 \pi \eta a \dot{r},(1)
$$

where, m is a mass of the particle, r is the radius-vector of the particle relative to an arbitrary coordinate system, $\dot{r}=v$ is the velocity of the particle.

Let us consider the projection of the radius-vector on the axis X. Then the equation (1) looks like:

$$
\begin{equation*}
m \ddot{x}=F_{x}-6 \pi \eta a \dot{x}, \tag{2}
\end{equation*}
$$

where, F_{x} is the projection of the net force F on the axis X.
We need to obtain the displacement of the Brownian particle x, which caused by the collisions with the molecules. Mean displacement of the particle \bar{x} would be equal to
zero, because the displacements of the particle with equal probability can have both positive and negative values. But the mean square displacement $\overline{x^{2}}$ is not equal to zero, and we can rewrite the equation (2) so that it includes the value of $\overline{x^{2}}$ (we multiply both sides of the equation on x):

$$
m x \ddot{x}=F_{x}-6 \pi \eta a x \dot{x} .
$$

Let us use the next identities:

$$
x \ddot{x}=\frac{1}{2} \frac{d^{2}\left(x^{2}\right)}{d t^{2}}-\left(\frac{d x}{d t}\right)^{2}, x \dot{x}=\frac{1}{2} \frac{d\left(x^{2}\right)}{d t} .
$$

Substituting this identities into the equation (3) we obtain:

$$
\frac{m}{2} \frac{d^{2}\left(x^{2}\right)}{d t^{2}}-m\left(\frac{d x}{d t}\right)^{2}=-3 \pi \eta a \frac{d\left(x^{2}\right)}{d t}+x F_{x} .
$$

This equality is valid for any particle and because of that it is also valid for mean values that includes in it, so we can write:

$$
\frac{m}{2} \frac{d^{2}\left(\overline{x^{2}}\right)}{d t^{2}}-m \overline{\left(\frac{d x}{d t}\right)^{2}}=-3 \pi \eta a \frac{d\left(\overline{x^{2}}\right)}{d t}+\overline{x F_{x}},
$$

where $\overline{x^{2}}$ is the mean square displacement of the particle, $\overline{\left(\frac{d x}{d t}\right)^{2}}$ is the mean square velocity of the particle, the mean value of $\overline{x F_{x}}$ is equal to zero because for a large number of particles x and F_{x} equally takes both positive and negative values. Therefore, the equation (2) takes the next form:

$$
\begin{equation*}
\frac{m}{2} \frac{d^{2}\left(\overline{x^{2}}\right)}{d t^{2}}-m \overline{\left(\frac{d x}{d t}\right)^{2}}=-3 \pi \eta a \frac{\left.d \overline{x^{2}}\right)}{d t} \tag{4}
\end{equation*}
$$

Because the motion of the particles is quite chaotic, then the mean squares velocity projections on all three coordinate axes must be equal to each other:

$$
\overline{\left(\frac{d x}{d t}\right)^{2}}=\overline{\left(\frac{d y}{d t}\right)^{2}}=\overline{\left(\frac{d z}{d t}\right)^{2}}
$$

Also obvious, that the sum of this values must be equal to the mean square velocity of the particles $\overline{v^{2}}$:

$$
\overline{\left(\frac{d x}{d t}\right)^{2}}+\overline{\left(\frac{d y}{d t}\right)^{2}}+\overline{\left(\frac{d z}{d t}\right)^{2}}=\overline{v^{2}}
$$

Therefore, we obtain:

$$
\begin{gathered}
\overline{\left(\frac{d x}{d t}\right)^{2}}=\frac{1}{3} \overline{v^{2}}, \\
m \overline{\left(\frac{d x}{d t}\right)^{2}}=\frac{1}{3} m \overline{v^{2}}=\frac{2}{3} \frac{m \overline{v^{2}}}{2} .
\end{gathered}
$$

Because the average kinetic energy of the Brownian particle must be equal to the average kinetic energy of the molecules of liquid (or gas), we can write:

$$
\begin{gather*}
\frac{m \overline{v^{2}}}{2}=\frac{3}{2} k T \\
m \overline{\left(\frac{d x}{d t}\right)^{2}}=\frac{2}{3} \frac{m \overline{v^{2}}}{2}=k T \tag{5}
\end{gather*}
$$

Substituting the equation (5) into the equation (4) we obtain:

$$
\frac{m}{2} \frac{d^{2}\left(\overline{x^{2}}\right)}{d t^{2}}-k T=-3 \pi \eta a \frac{d\left(\overline{x^{2}}\right)}{d t} .
$$

This equation can be easily integrated. Let us denote $\frac{d\left(\overline{x^{2}}\right)}{d t}=Z$ and rewrite the equation:

$$
\frac{m}{2} \frac{d Z}{d t}-k T=-3 \pi \eta a Z
$$

After separation of variables we obtain:

$$
\frac{d Z}{Z-\frac{k T}{3 \pi \eta a}}=-\frac{6 \pi \eta a}{m} d t .
$$

Integrating the left-side of the equation within the limits from 0 to Z and the the rightside of the equation within the limits from 0 to t we get:

$$
\begin{gathered}
\int_{0}^{Z} \frac{d Z}{Z-\frac{k T}{3 \pi \eta a}}=-\int_{0}^{t} \frac{6 \pi \eta a}{m} d t \\
\ln \left(Z-\frac{k T}{3 \pi \eta a}\right)-\ln \left(-\frac{k T}{3 \pi \eta a}\right)=-\frac{6 \pi \eta a}{m} t .
\end{gathered}
$$

From this equation we can find Z :

$$
Z=\frac{k T}{3 \pi \eta a}\left(1-e^{-\frac{6 \pi \eta a}{m} t}\right)=\frac{d\left(\overline{x^{2}}\right)}{d t} .
$$

The value of $e^{-\frac{6 \pi \eta a}{m} t}$ is negligible, so we can write:

$$
\frac{d}{d t}\left(\overline{x^{2}}\right)=\frac{k T}{3 \pi \eta a}
$$

For the finite time intervals Δt and appropriate displacements $\Delta \overline{x^{2}}$ the equation (6) takes form:

$$
\frac{\Delta \overline{x^{2}}}{\Delta t}=\frac{k T}{3 \pi \eta a} .
$$

Finally, we obtain an expression for Einstein's formula for mean square displacement of a Brownian particle:

$$
\Delta \overline{x^{2}}=\frac{k T}{3 \pi \eta a} \Delta t .
$$

