## Answer on Question 50672, Physics, Molecular Physics | Thermodynamics

## Question:

Show that the difference of heat capacities for a substance is given by the relation:
$C_{P}-C_{V}=-T\left(\frac{\partial V}{\partial T}\right)_{P}^{2}\left(\frac{\partial P}{\partial V}\right)_{T}$

## Answer:

Let us write the formula for the heat capacities at constant pressure and constant volume:

$$
\begin{aligned}
& C_{P}=T\left(\frac{\partial S}{\partial T}\right)_{P} \\
& C_{V}=T\left(\frac{\partial S}{\partial T}\right)_{V}
\end{aligned}
$$

Let's write the entropy as a function of volume $V$ and temperature $T$ :

$$
\begin{equation*}
d S=\left(\frac{\partial S}{\partial T}\right)_{V} d T+\left(\frac{\partial S}{\partial V}\right)_{T} d V \tag{1}
\end{equation*}
$$

Then we divide equation (1) by $d T$ at constant pressure and obtain:

$$
\left(\frac{\partial S}{\partial T}\right)_{P}-\left(\frac{\partial S}{\partial T}\right)_{V}=\left(\frac{\partial S}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P}
$$

Then we multiply both sides of this equation by $T$ :

$$
\begin{equation*}
C_{P}-C_{V}=T\left(\frac{\partial S}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P} \tag{2}
\end{equation*}
$$

From the expression for the Helmholtz free energy $F=U-T S$ we have:

$$
d F=d U-T d S-S d T=-P d V-S d T
$$

Therefore, $\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}$ and we can rewrite the equation (2):

$$
\begin{equation*}
C_{P}-C_{V}=T\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial V}{\partial T}\right)_{P} \tag{3}
\end{equation*}
$$

Let us consider the equation $\left(\frac{\partial P}{\partial T}\right)_{V}=\left(\frac{\partial S}{\partial V}\right)_{T}$. We multiply the left-hand side of the equation by $\left(\frac{\partial S}{\partial V}\right)_{T}\left(\frac{\partial T}{\partial V}\right)_{P}\left(\frac{\partial V}{\partial P}\right)_{T}$ and the rigth-hand side of one by $(-1)$ :

$$
\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial V}\right)_{P}\left(\frac{\partial V}{\partial P}\right)_{T}=-1
$$

Therefore, $\left(\frac{\partial P}{\partial T}\right)_{V}=-\left(\frac{\partial V}{\partial T}\right)_{P}\left(\frac{\partial P}{\partial V}\right)_{T}$ (4).
So, we substitute equation (4) into equation (3) and obtain:

$$
C_{P}-C_{V}=T\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial V}{\partial T}\right)_{P}=-T\left(\frac{\partial V}{\partial T}\right)_{P}\left(\frac{\partial V}{\partial T}\right)_{P}\left(\frac{\partial P}{\partial V}\right)_{T}=-T\left(\frac{\partial V}{\partial T}\right)_{P}^{2}\left(\frac{\partial P}{\partial V}\right)_{T}
$$

