Answer on Question 50658, Physics, Mechanics | Kinematics | Dynamics

Question:

A ball is thrown upward. At what height its kinetic energy will be twice of its potential energy?

Solution:

By the definition of the law of conservation of energy, when the ball is just begin to move upward we have:

$$
E=P E+K E=0+\frac{1}{2} m v_{0}^{2},
$$

where m is the mass of the ball, v_{0} is the initial velocity of the ball.
From the condition of the question we know that when the ball reaches a certain height its kinetic energy will be twice of its potential energy:

$$
\frac{1}{2} m v^{2}=2 m g h .
$$

Therefore, we can find the height from the law of conservation of energy:

$$
\begin{gathered}
0+\frac{1}{2} m v_{0}^{2}=m g h+\frac{1}{2} m v^{2}, \\
\frac{1}{2} m v_{0}^{2}=m g h+2 m g h, \\
\frac{1}{2} m v_{0}^{2}=3 m g h, \\
h=\frac{v_{0}^{2}}{6 g}=\frac{1}{3} \frac{v_{0}^{2}}{2 g}=\frac{1}{3} H, \text { where } H=\frac{v_{0}^{2}}{2 g} \text { is the maximum height reached by the ball. }
\end{gathered}
$$

Answer:

$h=\frac{1}{3} H$.

