Answer on Question \#50421, Physics, Mechanics | Kinematics | Dynamics

A string pendulum oscillates in a vertical plane. When it passes through the mean position, the tension in the string is 3 times the weight of the pendulum bob. What is the maximum displacement of the pendulum of the string with respect to the vertical.
(1) 30°
(2) 45°
(3) 60°
(4) 90°

Solution:

Consider a body of mass ' m ' performs vertical circular motion about the centre and radius ' r '
As the motion is affected by the gravity the velocities of the body and tension in the string will be different at different points of the circle. Let v_{1} be the velocity of the body at bottom point. Let T be the tension at the highest points.

The forces acting on the body at the highest position are,
i) Weight of the body acting vertically downward direction,
ii) Tension T in the string, acting vertically downward direction.

Centripetal force acting on object at the bottom position is provided partly by weight and partly by tension in the string.

$$
\begin{gathered}
m g-T=\frac{m v_{1}^{2}}{r} \\
T=3 m g \\
\frac{m v_{1}^{2}}{r}=2 m g \\
v_{1}^{2}=2 g r
\end{gathered}
$$

$K E$ at bottom $=1 / 2 m v^{2}=m g r$
This is the energy the swinging pendulum must have started with.
Gravitational Potential energy at start of pendulum swing $=\operatorname{mgr}(1-\cos \theta)$

$$
\begin{gathered}
m g r=m g r(1-\cos \theta) \\
(1-\cos \theta)=1 \\
\cos \theta=0 \\
\theta=90^{\circ}
\end{gathered}
$$

Answer: (4)90

