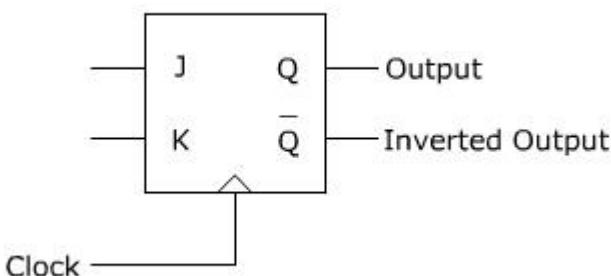


Answer on Question #50352, Physics, Electric Circuits


Task:

Consider a J-K flip-flop. $J=1$, $K=1$. Which of the following is true?

1. at the falling edge of the clock, Q_{n+1} is the same logic state as Q_n
2. at the falling edge of the clock, Q_{n+1} is the opposite state of Q_n
3. at the rising edge of the clock, Q_{n+1} is the same logic state as Q_n
4. at the rising edge of the clock, Q_{n+1} is the opposite state of Q_n

Answer:

The JK type flip-flop consists of two data inputs: J and K, and one clock input. There are again two outputs Q and \bar{Q} (where \bar{Q} is the reverse of Q).

The J-K flip-flop has its next output state decided by the state of its J and K inputs:

- If $J = K = 0$ the outputs do not change.
- If $J = 1$ and $K = 0$, the Q output becomes 1.
- If $J = 0$ and $K = 1$, the Q output becomes 0.
- If $J = K = 1$, the outputs change to the opposite state.

The \bar{Q} output is always the inverse of the Q output. With most J-K flip-flops, the changes occur on the next rising edge of the clock. In the fourth case above, in which $J = K = 1$, we say that the outputs toggle on each rising edge.

So the answer is 4. at the rising edge of the clock, Q_{n+1} is the opposite state of Q_n