Answer on Question \#50347, Physics, Electric Circuits

Calculate the ratio Vc / V at the turn-over frequency (sometimes called the break frequency) if $R 1=1 \mathrm{k} \Omega$ and $\mathrm{C}=2 \mu \mathrm{~F}$.

Solution:

By viewing the circuit as a voltage divider, the voltage across the capacitor is:

$$
V_{C}=\frac{1}{1+s R C} V
$$

where $s=j \omega$.
Generally we will be interested only in the magnitude of the response:

$$
\left|\frac{V_{C}}{V}\right|=\left|\frac{1}{1+s R C}\right|=\frac{1}{\sqrt{1^{2}+(\omega R C)^{2}}}
$$

At $\omega=1 / R C$, called the break frequency (or cutoff frequency, or 3 dB frequency, or half-power frequency, or bandwidth), the magnitude of the gain is

$$
\left|\frac{V_{C}}{V}\right|=\frac{1}{\sqrt{1+1}}=\frac{1}{\sqrt{2}}
$$

Answer: $\left|\frac{V_{c}}{V}\right|=\frac{1}{\sqrt{2}}$

