1. Sally travels by car from one city to another. She drives for 20.0 min at $84.0 \mathrm{~km} / \mathrm{h}, 55.0 \mathrm{~min}$ at $40.0 \mathrm{~km} / \mathrm{h}$, and 23.0 min at $77.0 \mathrm{~km} / \mathrm{h}$, and she spends 11.0 min eating lunch and buying gas. Determine the average speed for the trip.
$t_{1}=\frac{1}{3} h$

Solution.

$v_{1}=84 \frac{\mathrm{~km}}{\mathrm{~h}} \quad \bar{v}=\frac{l_{1}+l_{2}+l_{3}}{t_{1}+t_{2}+t_{3}+t_{4}}=\frac{v_{1} t_{1}+v_{2} t_{2}+v_{3} t_{3}}{t_{1}+t_{2}+t_{3}+t_{4}}$.
$t_{2}=\frac{11}{12} h$
$v_{2}=40 \frac{\mathrm{~km}}{\mathrm{~h}}$
Let check the dimension: $[\bar{v}]=\frac{\frac{k m}{h} \cdot h}{h}=\frac{\mathrm{km}}{\mathrm{h}}$.
$t_{3}=\frac{23}{60} h$
$v_{3}=77 \frac{\mathrm{~km}}{\mathrm{~h}}$
Let evaluate the quantity: $\bar{v}=\frac{84 \cdot \frac{1}{3}+40 \cdot \frac{11}{12}+77 \cdot \frac{23}{60}}{\frac{1}{3}+\frac{11}{12}+\frac{23}{60}+\frac{11}{60}}=51.84\left(\frac{\mathrm{~km}}{\mathrm{~h}}\right)$.

$t_{4}=\frac{11}{60} h$
$\bar{v}-?$

Answer: $51.84 \frac{\mathrm{~km}}{\mathrm{~h}}$.

